MakeItFrom.com
Menu (ESC)

C17500 Copper vs. AISI 310MoLN Stainless Steel

C17500 copper belongs to the copper alloys classification, while AISI 310MoLN stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is AISI 310MoLN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.0 to 30
28
Fatigue Strength, MPa 170 to 310
210
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 38 to 99
84
Shear Modulus, GPa 45
80
Shear Strength, MPa 200 to 520
400
Tensile Strength: Ultimate (UTS), MPa 310 to 860
610
Tensile Strength: Yield (Proof), MPa 170 to 760
290

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1060
1420
Melting Onset (Solidus), °C 1020
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 200
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 60
28
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 4.7
5.0
Embodied Energy, MJ/kg 73
70
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
140
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
200
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 27
21
Strength to Weight: Bending, points 11 to 23
20
Thermal Diffusivity, mm2/s 59
3.7
Thermal Shock Resistance, points 11 to 29
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
0
Iron (Fe), % 0 to 0.1
45.2 to 53.8
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.6 to 2.6
Nickel (Ni), % 0
20.5 to 23.5
Nitrogen (N), % 0
0.090 to 0.15
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.5
0