MakeItFrom.com
Menu (ESC)

C17500 Copper vs. ASTM A588 Steel

C17500 copper belongs to the copper alloys classification, while ASTM A588 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is ASTM A588 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.0 to 30
22
Fatigue Strength, MPa 170 to 310
270
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
73
Shear Strength, MPa 200 to 520
350
Tensile Strength: Ultimate (UTS), MPa 310 to 860
550
Tensile Strength: Yield (Proof), MPa 170 to 760
390

Thermal Properties

Latent Heat of Fusion, J/g 220
250 to 260
Maximum Temperature: Mechanical, °C 220
410
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1020
1410 to 1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 200
43 to 44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 60
2.3 to 2.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.7
1.5 to 1.6
Embodied Energy, MJ/kg 73
20 to 22
Embodied Water, L/kg 320
50 to 51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
400
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.7 to 27
20
Strength to Weight: Bending, points 11 to 23
19
Thermal Diffusivity, mm2/s 59
12
Thermal Shock Resistance, points 11 to 29
16