MakeItFrom.com
Menu (ESC)

C17500 Copper vs. EN 1.0558 Cast Steel

C17500 copper belongs to the copper alloys classification, while EN 1.0558 cast steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is EN 1.0558 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.0 to 30
18
Fatigue Strength, MPa 170 to 310
230
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 310 to 860
640
Tensile Strength: Yield (Proof), MPa 170 to 760
340

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1060
1470
Melting Onset (Solidus), °C 1020
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 200
53
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 60
1.7
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 4.7
1.4
Embodied Energy, MJ/kg 73
18
Embodied Water, L/kg 320
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
99
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
300
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.7 to 27
22
Strength to Weight: Bending, points 11 to 23
21
Thermal Diffusivity, mm2/s 59
14
Thermal Shock Resistance, points 11 to 29
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.4 to 0.7
0
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
0
Iron (Fe), % 0 to 0.1
99.935 to 100
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0