MakeItFrom.com
Menu (ESC)

C17500 Copper vs. EN 1.4983 Stainless Steel

C17500 copper belongs to the copper alloys classification, while EN 1.4983 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is EN 1.4983 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.0 to 30
40
Fatigue Strength, MPa 170 to 310
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
78
Shear Strength, MPa 200 to 520
430
Tensile Strength: Ultimate (UTS), MPa 310 to 860
630
Tensile Strength: Yield (Proof), MPa 170 to 760
230

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 220
940
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 200
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 60
19
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 4.7
4.1
Embodied Energy, MJ/kg 73
56
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
200
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
140
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 27
22
Strength to Weight: Bending, points 11 to 23
21
Thermal Diffusivity, mm2/s 59
4.0
Thermal Shock Resistance, points 11 to 29
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.4 to 0.7
0
Boron (B), % 0
0.0015 to 0.0060
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
16 to 18
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
0
Iron (Fe), % 0 to 0.1
61.8 to 69.6
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
12 to 14
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.4 to 0.8
Residuals, % 0 to 0.5
0