MakeItFrom.com
Menu (ESC)

C17500 Copper vs. SAE-AISI 1340 Steel

C17500 copper belongs to the copper alloys classification, while SAE-AISI 1340 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is SAE-AISI 1340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.0 to 30
11 to 23
Fatigue Strength, MPa 170 to 310
220 to 390
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
72
Shear Strength, MPa 200 to 520
340 to 440
Tensile Strength: Ultimate (UTS), MPa 310 to 860
540 to 730
Tensile Strength: Yield (Proof), MPa 170 to 760
300 to 620

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1060
1450
Melting Onset (Solidus), °C 1020
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 200
51
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 60
1.9
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.7
1.4
Embodied Energy, MJ/kg 73
19
Embodied Water, L/kg 320
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
78 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
240 to 1040
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.7 to 27
19 to 26
Strength to Weight: Bending, points 11 to 23
19 to 23
Thermal Diffusivity, mm2/s 59
14
Thermal Shock Resistance, points 11 to 29
17 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0.38 to 0.43
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
0
Iron (Fe), % 0 to 0.1
97.2 to 97.9
Manganese (Mn), % 0
1.6 to 1.9
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 0.5
0