MakeItFrom.com
Menu (ESC)

C17500 Copper vs. C70260 Copper

Both C17500 copper and C70260 copper are copper alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 6.0 to 30
9.5 to 19
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 45
44
Shear Strength, MPa 200 to 520
320 to 450
Tensile Strength: Ultimate (UTS), MPa 310 to 860
520 to 760
Tensile Strength: Yield (Proof), MPa 170 to 760
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 220
220
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1060
1060
Melting Onset (Solidus), °C 1020
1040
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 200
160
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
40 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
40 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 4.7
2.7
Embodied Energy, MJ/kg 73
43
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
710 to 1810
Stiffness to Weight: Axial, points 7.5
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.7 to 27
16 to 24
Strength to Weight: Bending, points 11 to 23
16 to 21
Thermal Diffusivity, mm2/s 59
45
Thermal Shock Resistance, points 11 to 29
18 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.4 to 0.7
0
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
95.8 to 98.8
Iron (Fe), % 0 to 0.1
0
Nickel (Ni), % 0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.2
0.2 to 0.7
Residuals, % 0 to 0.5
0 to 0.5