MakeItFrom.com
Menu (ESC)

C17500 Copper vs. S32615 Stainless Steel

C17500 copper belongs to the copper alloys classification, while S32615 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is S32615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.0 to 30
28
Fatigue Strength, MPa 170 to 310
180
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
75
Shear Strength, MPa 200 to 520
400
Tensile Strength: Ultimate (UTS), MPa 310 to 860
620
Tensile Strength: Yield (Proof), MPa 170 to 760
250

Thermal Properties

Latent Heat of Fusion, J/g 220
370
Maximum Temperature: Mechanical, °C 220
990
Melting Completion (Liquidus), °C 1060
1350
Melting Onset (Solidus), °C 1020
1310
Specific Heat Capacity, J/kg-K 390
500
Thermal Expansion, µm/m-K 18
15

Otherwise Unclassified Properties

Base Metal Price, % relative 60
24
Density, g/cm3 8.9
7.6
Embodied Carbon, kg CO2/kg material 4.7
4.4
Embodied Energy, MJ/kg 73
63
Embodied Water, L/kg 320
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
140
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
160
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 27
23
Strength to Weight: Bending, points 11 to 23
21
Thermal Shock Resistance, points 11 to 29
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
16.5 to 19.5
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
1.5 to 2.5
Iron (Fe), % 0 to 0.1
46.4 to 57.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0.3 to 1.5
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
4.8 to 6.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0