MakeItFrom.com
Menu (ESC)

C17510 Copper vs. AWS E410

C17510 copper belongs to the copper alloys classification, while AWS E410 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17510 copper and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.4 to 37
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 310 to 860
580
Tensile Strength: Yield (Proof), MPa 120 to 750
440

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Melting Completion (Liquidus), °C 1070
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 210
28
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22 to 54
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 23 to 54
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 49
7.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.2
2.0
Embodied Energy, MJ/kg 65
28
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 92
120
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 2410
500
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 27
21
Strength to Weight: Bending, points 11 to 23
20
Thermal Diffusivity, mm2/s 60
7.5
Thermal Shock Resistance, points 11 to 30
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 13.5
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 95.9 to 98.4
0 to 0.75
Iron (Fe), % 0 to 0.1
82.2 to 89
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 1.4 to 2.2
0 to 0.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0