MakeItFrom.com
Menu (ESC)

C17510 Copper vs. CC140C Copper

Both C17510 copper and CC140C copper are copper alloys. They have a very high 97% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17510 copper and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 5.4 to 37
11
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
44
Tensile Strength: Ultimate (UTS), MPa 310 to 860
340
Tensile Strength: Yield (Proof), MPa 120 to 750
230

Thermal Properties

Latent Heat of Fusion, J/g 220
210
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1070
1100
Melting Onset (Solidus), °C 1030
1040
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 210
310
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22 to 54
77
Electrical Conductivity: Equal Weight (Specific), % IACS 23 to 54
78

Otherwise Unclassified Properties

Base Metal Price, % relative 49
31
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 4.2
2.6
Embodied Energy, MJ/kg 65
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 92
34
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 2410
220
Stiffness to Weight: Axial, points 7.4
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.7 to 27
10
Strength to Weight: Bending, points 11 to 23
12
Thermal Diffusivity, mm2/s 60
89
Thermal Shock Resistance, points 11 to 30
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.2 to 0.6
0
Chromium (Cr), % 0
0.4 to 1.2
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 95.9 to 98.4
98.8 to 99.6
Iron (Fe), % 0 to 0.1
0
Nickel (Ni), % 1.4 to 2.2
0
Silicon (Si), % 0 to 0.2
0
Residuals, % 0 to 0.5
0