MakeItFrom.com
Menu (ESC)

C17510 Copper vs. C93900 Bronze

Both C17510 copper and C93900 bronze are copper alloys. They have 79% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C17510 copper and the bottom bar is C93900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
95
Elongation at Break, % 5.4 to 37
5.6
Poisson's Ratio 0.34
0.36
Shear Modulus, GPa 44
35
Tensile Strength: Ultimate (UTS), MPa 310 to 860
190
Tensile Strength: Yield (Proof), MPa 120 to 750
130

Thermal Properties

Latent Heat of Fusion, J/g 220
170
Maximum Temperature: Mechanical, °C 220
140
Melting Completion (Liquidus), °C 1070
940
Melting Onset (Solidus), °C 1030
850
Specific Heat Capacity, J/kg-K 390
340
Thermal Conductivity, W/m-K 210
52
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22 to 54
11
Electrical Conductivity: Equal Weight (Specific), % IACS 23 to 54
11

Otherwise Unclassified Properties

Base Metal Price, % relative 49
30
Density, g/cm3 8.9
9.1
Embodied Carbon, kg CO2/kg material 4.2
3.0
Embodied Energy, MJ/kg 65
49
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 92
9.5
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 2410
83
Stiffness to Weight: Axial, points 7.4
5.8
Stiffness to Weight: Bending, points 18
17
Strength to Weight: Axial, points 9.7 to 27
5.9
Strength to Weight: Bending, points 11 to 23
8.1
Thermal Diffusivity, mm2/s 60
17
Thermal Shock Resistance, points 11 to 30
7.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Beryllium (Be), % 0.2 to 0.6
0
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 95.9 to 98.4
76.5 to 79.5
Iron (Fe), % 0 to 0.1
0 to 0.4
Lead (Pb), % 0
14 to 18
Nickel (Ni), % 1.4 to 2.2
0 to 0.8
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.2
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0 to 0.5
0 to 1.1