MakeItFrom.com
Menu (ESC)

C18100 Copper vs. CC492K Bronze

Both C18100 copper and CC492K bronze are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18100 copper and the bottom bar is CC492K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.3
14
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 47
40
Tensile Strength: Ultimate (UTS), MPa 510
280
Tensile Strength: Yield (Proof), MPa 460
150

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
1000
Melting Onset (Solidus), °C 1020
900
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 320
73
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
13
Electrical Conductivity: Equal Weight (Specific), % IACS 81
13

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 43
54
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
33
Resilience: Unit (Modulus of Resilience), kJ/m3 900
100
Stiffness to Weight: Axial, points 7.3
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 16
8.7
Strength to Weight: Bending, points 16
11
Thermal Diffusivity, mm2/s 94
23
Thermal Shock Resistance, points 18
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.7 to 99.49
83 to 89
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
2.5 to 3.5
Magnesium (Mg), % 0.030 to 0.060
0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
1.5 to 3.0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.5
0