MakeItFrom.com
Menu (ESC)

C18100 Copper vs. Grade CY40 Nickel

C18100 copper belongs to the copper alloys classification, while grade CY40 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18100 copper and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.3
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 47
74
Tensile Strength: Ultimate (UTS), MPa 510
540
Tensile Strength: Yield (Proof), MPa 460
220

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 1080
1350
Melting Onset (Solidus), °C 1020
1300
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 320
14
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 81
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
55
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 2.7
9.1
Embodied Energy, MJ/kg 43
130
Embodied Water, L/kg 310
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
150
Resilience: Unit (Modulus of Resilience), kJ/m3 900
130
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 16
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 94
3.7
Thermal Shock Resistance, points 18
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.4
Chromium (Cr), % 0.4 to 1.2
14 to 17
Copper (Cu), % 98.7 to 99.49
0
Iron (Fe), % 0
0 to 11
Magnesium (Mg), % 0.030 to 0.060
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
67 to 86
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 3.0
Sulfur (S), % 0
0 to 0.030
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.5
0