MakeItFrom.com
Menu (ESC)

C18100 Copper vs. C64800 Bronze

Both C18100 copper and C64800 bronze are copper alloys. Both are furnished in the H04 (full hard) temper. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C18100 copper and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 8.3
8.0
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 47
44
Shear Strength, MPa 300
380
Tensile Strength: Ultimate (UTS), MPa 510
640
Tensile Strength: Yield (Proof), MPa 460
630

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1080
1090
Melting Onset (Solidus), °C 1020
1030
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 320
260
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
65
Electrical Conductivity: Equal Weight (Specific), % IACS 81
66

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 43
43
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
51
Resilience: Unit (Modulus of Resilience), kJ/m3 900
1680
Stiffness to Weight: Axial, points 7.3
7.4
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 16
20
Strength to Weight: Bending, points 16
19
Thermal Diffusivity, mm2/s 94
75
Thermal Shock Resistance, points 18
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Chromium (Cr), % 0.4 to 1.2
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 98.7 to 99.49
92.4 to 98.8
Iron (Fe), % 0
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.030 to 0.060
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0
0.2 to 1.0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
0 to 0.5
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.5
0 to 0.5