MakeItFrom.com
Menu (ESC)

C18100 Copper vs. C86800 Bronze

Both C18100 copper and C86800 bronze are copper alloys. They have 56% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18100 copper and the bottom bar is C86800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.3
22
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 47
42
Tensile Strength: Ultimate (UTS), MPa 510
570
Tensile Strength: Yield (Proof), MPa 460
260

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 200
140
Melting Completion (Liquidus), °C 1080
900
Melting Onset (Solidus), °C 1020
880
Specific Heat Capacity, J/kg-K 390
400
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 81
10

Otherwise Unclassified Properties

Base Metal Price, % relative 31
24
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 43
51
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
100
Resilience: Unit (Modulus of Resilience), kJ/m3 900
310
Stiffness to Weight: Axial, points 7.3
7.7
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 16
20
Strength to Weight: Bending, points 16
19
Thermal Shock Resistance, points 18
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 2.0
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.7 to 99.49
53.5 to 57
Iron (Fe), % 0
1.0 to 2.5
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0.030 to 0.060
0
Manganese (Mn), % 0
2.5 to 4.0
Nickel (Ni), % 0
2.5 to 4.0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
28.3 to 40.5
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.5
0 to 1.0