MakeItFrom.com
Menu (ESC)

C18400 Copper vs. ACI-ASTM CB7Cu-2 Steel

C18400 copper belongs to the copper alloys classification, while ACI-ASTM CB7Cu-2 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is ACI-ASTM CB7Cu-2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 13 to 50
5.7 to 11
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
75
Tensile Strength: Ultimate (UTS), MPa 270 to 490
960 to 1350
Tensile Strength: Yield (Proof), MPa 110 to 480
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1070
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 81
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
38
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
1510 to 3600
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.5 to 15
34 to 48
Strength to Weight: Bending, points 10 to 16
28 to 35
Thermal Diffusivity, mm2/s 94
4.6
Thermal Shock Resistance, points 9.6 to 17
32 to 45

Alloy Composition

Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.4 to 1.2
14 to 15.5
Copper (Cu), % 97.2 to 99.6
2.5 to 3.2
Iron (Fe), % 0 to 0.15
73.6 to 79
Lithium (Li), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.7
Nickel (Ni), % 0
4.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.050
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0 to 0.5
0