MakeItFrom.com
Menu (ESC)

C18400 Copper vs. ASTM A588 Steel

C18400 copper belongs to the copper alloys classification, while ASTM A588 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is ASTM A588 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 13 to 50
22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 190 to 310
350
Tensile Strength: Ultimate (UTS), MPa 270 to 490
550
Tensile Strength: Yield (Proof), MPa 110 to 480
390

Thermal Properties

Latent Heat of Fusion, J/g 210
250 to 260
Maximum Temperature: Mechanical, °C 200
410
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1070
1410 to 1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 320
43 to 44
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 81
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.3 to 2.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.5 to 1.6
Embodied Energy, MJ/kg 41
20 to 22
Embodied Water, L/kg 310
50 to 51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
400
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.5 to 15
20
Strength to Weight: Bending, points 10 to 16
19
Thermal Diffusivity, mm2/s 94
12
Thermal Shock Resistance, points 9.6 to 17
16