MakeItFrom.com
Menu (ESC)

C18400 Copper vs. EN 1.5535 Steel

C18400 copper belongs to the copper alloys classification, while EN 1.5535 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is EN 1.5535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 13 to 50
11 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 190 to 310
320 to 370
Tensile Strength: Ultimate (UTS), MPa 270 to 490
450 to 1490
Tensile Strength: Yield (Proof), MPa 110 to 480
300 to 500

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 320
50
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 81
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.9
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
240 to 680
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.5 to 15
16 to 53
Strength to Weight: Bending, points 10 to 16
17 to 37
Thermal Diffusivity, mm2/s 94
13
Thermal Shock Resistance, points 9.6 to 17
13 to 44

Alloy Composition

Arsenic (As), % 0 to 0.0050
0
Boron (B), % 0
0.00080 to 0.0050
Calcium (Ca), % 0 to 0.0050
0
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0.4 to 1.2
0 to 0.3
Copper (Cu), % 97.2 to 99.6
0 to 0.25
Iron (Fe), % 0 to 0.15
97.6 to 98.9
Lithium (Li), % 0 to 0.050
0
Manganese (Mn), % 0
0.9 to 1.2
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0 to 0.5
0