MakeItFrom.com
Menu (ESC)

C18400 Copper vs. EN 1.8505 Steel

C18400 copper belongs to the copper alloys classification, while EN 1.8505 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is EN 1.8505 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 13 to 50
13
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 190 to 310
630
Tensile Strength: Ultimate (UTS), MPa 270 to 490
1050
Tensile Strength: Yield (Proof), MPa 110 to 480
860

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
440
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1070
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 81
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.6
Embodied Energy, MJ/kg 41
22
Embodied Water, L/kg 310
65

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
1950
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.5 to 15
37
Strength to Weight: Bending, points 10 to 16
30
Thermal Diffusivity, mm2/s 94
11
Thermal Shock Resistance, points 9.6 to 17
31

Alloy Composition

Aluminum (Al), % 0
0.8 to 1.2
Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Carbon (C), % 0
0.28 to 0.35
Chromium (Cr), % 0.4 to 1.2
1.5 to 1.8
Copper (Cu), % 97.2 to 99.6
0
Iron (Fe), % 0 to 0.15
95.4 to 97.1
Lithium (Li), % 0 to 0.050
0
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.2 to 0.4
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0 to 0.5
0