MakeItFrom.com
Menu (ESC)

C18400 Copper vs. EN AC-43300 Aluminum

C18400 copper belongs to the copper alloys classification, while EN AC-43300 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C18400 copper and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
71
Elongation at Break, % 13 to 50
3.4 to 6.7
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
27
Tensile Strength: Ultimate (UTS), MPa 270 to 490
280 to 290
Tensile Strength: Yield (Proof), MPa 110 to 480
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 210
540
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
600
Melting Onset (Solidus), °C 1070
590
Specific Heat Capacity, J/kg-K 390
910
Thermal Conductivity, W/m-K 320
140
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
40
Electrical Conductivity: Equal Weight (Specific), % IACS 81
140

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.9
2.5
Embodied Carbon, kg CO2/kg material 2.6
7.9
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
300 to 370
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 18
54
Strength to Weight: Axial, points 8.5 to 15
31 to 32
Strength to Weight: Bending, points 10 to 16
37 to 38
Thermal Diffusivity, mm2/s 94
59
Thermal Shock Resistance, points 9.6 to 17
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
88.9 to 90.8
Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 97.2 to 99.6
0 to 0.050
Iron (Fe), % 0 to 0.15
0 to 0.19
Lithium (Li), % 0 to 0.050
0
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
9.0 to 10
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.7
0 to 0.070
Residuals, % 0 to 0.5
0 to 0.1