MakeItFrom.com
Menu (ESC)

C18400 Copper vs. Nickel 686

C18400 copper belongs to the copper alloys classification, while nickel 686 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 13 to 50
51
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
77
Shear Strength, MPa 190 to 310
560
Tensile Strength: Ultimate (UTS), MPa 270 to 490
780
Tensile Strength: Yield (Proof), MPa 110 to 480
350

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1080
1380
Melting Onset (Solidus), °C 1070
1340
Specific Heat Capacity, J/kg-K 390
420
Thermal Conductivity, W/m-K 320
9.8
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 81
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
70
Density, g/cm3 8.9
9.0
Embodied Carbon, kg CO2/kg material 2.6
12
Embodied Energy, MJ/kg 41
170
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
320
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
280
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
22
Strength to Weight: Axial, points 8.5 to 15
24
Strength to Weight: Bending, points 10 to 16
21
Thermal Diffusivity, mm2/s 94
2.6
Thermal Shock Resistance, points 9.6 to 17
21

Alloy Composition

Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0.4 to 1.2
19 to 23
Copper (Cu), % 97.2 to 99.6
0
Iron (Fe), % 0 to 0.15
0 to 5.0
Lithium (Li), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.75
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
49.5 to 63
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0 to 0.5
0