MakeItFrom.com
Menu (ESC)

C18400 Copper vs. C86300 Bronze

Both C18400 copper and C86300 bronze are copper alloys. They have 64% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 13 to 50
14
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
42
Tensile Strength: Ultimate (UTS), MPa 270 to 490
850
Tensile Strength: Yield (Proof), MPa 110 to 480
480

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1080
920
Melting Onset (Solidus), °C 1070
890
Specific Heat Capacity, J/kg-K 390
420
Thermal Conductivity, W/m-K 320
35
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 81
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 41
51
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
100
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
1030
Stiffness to Weight: Axial, points 7.3
7.8
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 8.5 to 15
30
Strength to Weight: Bending, points 10 to 16
25
Thermal Diffusivity, mm2/s 94
11
Thermal Shock Resistance, points 9.6 to 17
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.0 to 7.5
Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 97.2 to 99.6
60 to 66
Iron (Fe), % 0 to 0.15
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Lithium (Li), % 0 to 0.050
0
Manganese (Mn), % 0
2.5 to 5.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.7
22 to 28
Residuals, % 0 to 0.5
0 to 1.0