MakeItFrom.com
Menu (ESC)

C18400 Copper vs. S32803 Stainless Steel

C18400 copper belongs to the copper alloys classification, while S32803 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 13 to 50
18
Poisson's Ratio 0.34
0.27
Rockwell B Hardness 16 to 84
86
Shear Modulus, GPa 44
81
Shear Strength, MPa 190 to 310
420
Tensile Strength: Ultimate (UTS), MPa 270 to 490
680
Tensile Strength: Yield (Proof), MPa 110 to 480
560

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1070
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 81
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
19
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.7
Embodied Energy, MJ/kg 41
53
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
760
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.5 to 15
25
Strength to Weight: Bending, points 10 to 16
22
Thermal Diffusivity, mm2/s 94
4.4
Thermal Shock Resistance, points 9.6 to 17
22

Alloy Composition

Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0.4 to 1.2
28 to 29
Copper (Cu), % 97.2 to 99.6
0
Iron (Fe), % 0 to 0.15
62.9 to 67.1
Lithium (Li), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
3.0 to 4.0
Niobium (Nb), % 0
0.15 to 0.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.050
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.55
Sulfur (S), % 0
0 to 0.0035
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0 to 0.5
0