MakeItFrom.com
Menu (ESC)

C18600 Copper vs. AISI 348 Stainless Steel

C18600 copper belongs to the copper alloys classification, while AISI 348 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is AISI 348 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 11
41
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 310 to 340
400
Tensile Strength: Ultimate (UTS), MPa 520 to 580
580
Tensile Strength: Yield (Proof), MPa 500 to 520
230

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
940
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1070
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 280
16
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 70
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 71
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
19
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.7
Embodied Energy, MJ/kg 46
54
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
140
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 16 to 18
21
Strength to Weight: Bending, points 16 to 17
20
Thermal Diffusivity, mm2/s 81
4.2
Thermal Shock Resistance, points 19 to 20
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.1 to 1.0
17 to 19
Cobalt (Co), % 0 to 0.1
0 to 0.2
Copper (Cu), % 96.5 to 99.55
0
Iron (Fe), % 0.25 to 0.8
63.8 to 74
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.25
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1
Titanium (Ti), % 0.050 to 0.5
0
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0 to 0.5
0