MakeItFrom.com
Menu (ESC)

C18600 Copper vs. ASTM A369 Grade FP2

C18600 copper belongs to the copper alloys classification, while ASTM A369 grade FP2 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is ASTM A369 grade FP2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 11
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 310 to 340
270
Tensile Strength: Ultimate (UTS), MPa 520 to 580
430
Tensile Strength: Yield (Proof), MPa 500 to 520
240

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
420
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 1070
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 280
49
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 70
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 71
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.6
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.6
Embodied Energy, MJ/kg 46
20
Embodied Water, L/kg 310
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
75
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
150
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 16 to 18
15
Strength to Weight: Bending, points 16 to 17
16
Thermal Diffusivity, mm2/s 81
13
Thermal Shock Resistance, points 19 to 20
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0.1 to 1.0
0.5 to 0.81
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 96.5 to 99.55
0
Iron (Fe), % 0.25 to 0.8
97.4 to 98.6
Manganese (Mn), % 0
0.3 to 0.61
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.1 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.050 to 0.5
0
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0 to 0.5
0