MakeItFrom.com
Menu (ESC)

C18600 Copper vs. EN 1.0434 Steel

C18600 copper belongs to the copper alloys classification, while EN 1.0434 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is EN 1.0434 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 11
12 to 28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 310 to 340
280 to 330
Tensile Strength: Ultimate (UTS), MPa 520 to 580
390 to 540
Tensile Strength: Yield (Proof), MPa 500 to 520
250 to 450

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 280
52
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 70
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 71
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 46
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
39 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
170 to 540
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 16 to 18
14 to 19
Strength to Weight: Bending, points 16 to 17
15 to 19
Thermal Diffusivity, mm2/s 81
14
Thermal Shock Resistance, points 19 to 20
12 to 17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0
0.15 to 0.19
Chromium (Cr), % 0.1 to 1.0
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 96.5 to 99.55
0
Iron (Fe), % 0.25 to 0.8
98.8 to 99.18
Manganese (Mn), % 0
0.65 to 0.85
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.050 to 0.5
0
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0 to 0.5
0