MakeItFrom.com
Menu (ESC)

C18600 Copper vs. EN 1.4597 Stainless Steel

C18600 copper belongs to the copper alloys classification, while EN 1.4597 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is EN 1.4597 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 11
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 310 to 340
470
Tensile Strength: Ultimate (UTS), MPa 520 to 580
680
Tensile Strength: Yield (Proof), MPa 500 to 520
330

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
860
Melting Completion (Liquidus), °C 1090
1400
Melting Onset (Solidus), °C 1070
1350
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 280
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 70
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 71
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
11
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.9
2.5
Embodied Energy, MJ/kg 46
36
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
250
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
280
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 16 to 18
25
Strength to Weight: Bending, points 16 to 17
22
Thermal Diffusivity, mm2/s 81
4.1
Thermal Shock Resistance, points 19 to 20
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.1 to 1.0
15 to 18
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 96.5 to 99.55
2.0 to 3.5
Iron (Fe), % 0.25 to 0.8
63 to 76.4
Manganese (Mn), % 0
6.5 to 9.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.25
0 to 3.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.050 to 0.5
0
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0 to 0.5
0