MakeItFrom.com
Menu (ESC)

C18600 Copper vs. EN 1.6554 Steel

C18600 copper belongs to the copper alloys classification, while EN 1.6554 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is EN 1.6554 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 11
17 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 520 to 580
780 to 930
Tensile Strength: Yield (Proof), MPa 500 to 520
550 to 790

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
420
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 280
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 70
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 71
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
3.4
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.7
Embodied Energy, MJ/kg 46
22
Embodied Water, L/kg 310
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
810 to 1650
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 16 to 18
27 to 33
Strength to Weight: Bending, points 16 to 17
24 to 27
Thermal Diffusivity, mm2/s 81
11
Thermal Shock Resistance, points 19 to 20
23 to 27

Alloy Composition

Carbon (C), % 0
0.23 to 0.28
Chromium (Cr), % 0.1 to 1.0
0.7 to 0.9
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 96.5 to 99.55
0 to 0.3
Iron (Fe), % 0.25 to 0.8
94.6 to 97.3
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 0.25
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.050 to 0.5
0
Vanadium (V), % 0
0 to 0.030
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0 to 0.5
0

Comparable Variants