MakeItFrom.com
Menu (ESC)

C18600 Copper vs. SAE-AISI 1040 Steel

C18600 copper belongs to the copper alloys classification, while SAE-AISI 1040 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is SAE-AISI 1040 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 11
13 to 20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 310 to 340
350 to 390
Tensile Strength: Ultimate (UTS), MPa 520 to 580
570 to 640
Tensile Strength: Yield (Proof), MPa 500 to 520
320 to 530

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 280
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 70
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 71
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 46
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
79 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
270 to 760
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 16 to 18
20 to 23
Strength to Weight: Bending, points 16 to 17
19 to 21
Thermal Diffusivity, mm2/s 81
14
Thermal Shock Resistance, points 19 to 20
18 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.37 to 0.44
Chromium (Cr), % 0.1 to 1.0
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 96.5 to 99.55
0
Iron (Fe), % 0.25 to 0.8
98.6 to 99.03
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0.050 to 0.5
0
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0 to 0.5
0