MakeItFrom.com
Menu (ESC)

C18600 Copper vs. C64210 Bronze

Both C18600 copper and C64210 bronze are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is C64210 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.0 to 11
35
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
42
Shear Strength, MPa 310 to 340
380
Tensile Strength: Ultimate (UTS), MPa 520 to 580
570
Tensile Strength: Yield (Proof), MPa 500 to 520
290

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1090
1040
Melting Onset (Solidus), °C 1070
990
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 280
48
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 70
13
Electrical Conductivity: Equal Weight (Specific), % IACS 71
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 2.9
3.0
Embodied Energy, MJ/kg 46
49
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
360
Stiffness to Weight: Axial, points 7.3
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 16 to 18
19
Strength to Weight: Bending, points 16 to 17
18
Thermal Diffusivity, mm2/s 81
13
Thermal Shock Resistance, points 19 to 20
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
6.3 to 7.0
Arsenic (As), % 0
0 to 0.15
Chromium (Cr), % 0.1 to 1.0
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 96.5 to 99.55
89 to 92.2
Iron (Fe), % 0.25 to 0.8
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.25
0 to 0.25
Silicon (Si), % 0
1.5 to 2.0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0.050 to 0.5
0
Zinc (Zn), % 0
0 to 0.5
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0 to 0.5
0 to 0.5