MakeItFrom.com
Menu (ESC)

C18600 Copper vs. C68300 Brass

Both C18600 copper and C68300 brass are copper alloys. They have 61% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is C68300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 8.0 to 11
15
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 44
40
Shear Strength, MPa 310 to 340
260
Tensile Strength: Ultimate (UTS), MPa 520 to 580
430
Tensile Strength: Yield (Proof), MPa 500 to 520
260

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1090
900
Melting Onset (Solidus), °C 1070
890
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 280
120
Thermal Expansion, µm/m-K 17
20

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 46
46
Embodied Water, L/kg 310
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
56
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
330
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 16 to 18
15
Strength to Weight: Bending, points 16 to 17
16
Thermal Diffusivity, mm2/s 81
38
Thermal Shock Resistance, points 19 to 20
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Antimony (Sb), % 0
0.3 to 1.0
Cadmium (Cd), % 0
0 to 0.010
Chromium (Cr), % 0.1 to 1.0
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 96.5 to 99.55
59 to 63
Iron (Fe), % 0.25 to 0.8
0
Lead (Pb), % 0
0 to 0.090
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 0
0.3 to 1.0
Tin (Sn), % 0
0.050 to 0.2
Titanium (Ti), % 0.050 to 0.5
0
Zinc (Zn), % 0
34.2 to 40.4
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0 to 0.5
0 to 0.5