MakeItFrom.com
Menu (ESC)

C18900 Copper vs. EN AC-45300 Aluminum

C18900 copper belongs to the copper alloys classification, while EN AC-45300 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C18900 copper and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
71
Elongation at Break, % 14 to 48
1.0 to 2.8
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Tensile Strength: Ultimate (UTS), MPa 260 to 500
220 to 290
Tensile Strength: Yield (Proof), MPa 67 to 390
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 210
470
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
630
Melting Onset (Solidus), °C 1020
590
Specific Heat Capacity, J/kg-K 390
890
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
36
Electrical Conductivity: Equal Weight (Specific), % IACS 30
120

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 310
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65 to 95
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 20 to 660
160 to 390
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 8.2 to 16
23 to 29
Strength to Weight: Bending, points 10 to 16
30 to 35
Thermal Diffusivity, mm2/s 38
60
Thermal Shock Resistance, points 9.3 to 18
10 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.010
90.2 to 94.2
Copper (Cu), % 97.7 to 99.15
1.0 to 1.5
Iron (Fe), % 0
0 to 0.65
Lead (Pb), % 0 to 0.020
0 to 0.15
Magnesium (Mg), % 0
0.35 to 0.65
Manganese (Mn), % 0.1 to 0.3
0 to 0.55
Nickel (Ni), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0.15 to 0.4
4.5 to 5.5
Tin (Sn), % 0.6 to 0.9
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 0.15
Residuals, % 0 to 0.5
0 to 0.15