MakeItFrom.com
Menu (ESC)

C18900 Copper vs. Type 4 Niobium

C18900 copper belongs to the copper alloys classification, while Type 4 niobium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C18900 copper and the bottom bar is Type 4 niobium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 14 to 48
23
Poisson's Ratio 0.34
0.4
Shear Modulus, GPa 43
38
Tensile Strength: Ultimate (UTS), MPa 260 to 500
220
Tensile Strength: Yield (Proof), MPa 67 to 390
140

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Specific Heat Capacity, J/kg-K 390
270
Thermal Conductivity, W/m-K 130
42
Thermal Expansion, µm/m-K 17
7.3

Otherwise Unclassified Properties

Density, g/cm3 8.9
8.6
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65 to 95
44
Resilience: Unit (Modulus of Resilience), kJ/m3 20 to 660
93
Stiffness to Weight: Axial, points 7.2
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.2 to 16
7.2
Strength to Weight: Bending, points 10 to 16
9.5
Thermal Diffusivity, mm2/s 38
18
Thermal Shock Resistance, points 9.3 to 18
21

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.010
Copper (Cu), % 97.7 to 99.15
0
Hafnium (Hf), % 0
0 to 0.020
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0
0 to 0.010
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0.1 to 0.3
0
Molybdenum (Mo), % 0
0 to 0.050
Nickel (Ni), % 0
0 to 0.0050
Niobium (Nb), % 0
98.1 to 99.2
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0.15 to 0.4
0 to 0.0050
Tantalum (Ta), % 0
0 to 0.5
Tin (Sn), % 0.6 to 0.9
0
Titanium (Ti), % 0
0 to 0.020
Tungsten (W), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0.8 to 1.2
Residuals, % 0 to 0.5
0