MakeItFrom.com
Menu (ESC)

C19000 Copper vs. C87900 Brass

Both C19000 copper and C87900 brass are copper alloys. They have 67% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C19000 copper and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.5 to 50
25
Poisson's Ratio 0.34
0.31
Rockwell B Hardness 45 to 94
70
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 260 to 760
480
Tensile Strength: Yield (Proof), MPa 140 to 630
240

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1080
930
Melting Onset (Solidus), °C 1040
900
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 250
120
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
15
Electrical Conductivity: Equal Weight (Specific), % IACS 61
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
24
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 1730
270
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 8.2 to 24
17
Strength to Weight: Bending, points 10 to 21
17
Thermal Diffusivity, mm2/s 73
37
Thermal Shock Resistance, points 9.3 to 27
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 96.9 to 99
63 to 69.2
Iron (Fe), % 0 to 0.1
0 to 0.4
Lead (Pb), % 0 to 0.050
0 to 0.25
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0.9 to 1.3
0 to 0.5
Phosphorus (P), % 0.15 to 0.35
0 to 0.010
Silicon (Si), % 0
0.8 to 1.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.8
30 to 36
Residuals, % 0 to 0.5
0