MakeItFrom.com
Menu (ESC)

C19010 Copper vs. 6018 Aluminum

C19010 copper belongs to the copper alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19010 copper and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 2.4 to 22
9.0 to 9.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Shear Strength, MPa 210 to 360
170 to 180
Tensile Strength: Ultimate (UTS), MPa 330 to 640
290 to 300
Tensile Strength: Yield (Proof), MPa 260 to 620
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 210
400
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1060
640
Melting Onset (Solidus), °C 1010
570
Specific Heat Capacity, J/kg-K 390
890
Thermal Conductivity, W/m-K 260
170
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 63
44
Electrical Conductivity: Equal Weight (Specific), % IACS 48 to 63
140

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 8.9
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.2
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3 to 140
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 1680
360 to 380
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
48
Strength to Weight: Axial, points 10 to 20
28 to 29
Strength to Weight: Bending, points 12 to 18
34 to 35
Thermal Diffusivity, mm2/s 75
65
Thermal Shock Resistance, points 12 to 23
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 97.3 to 99.04
0.15 to 0.4
Iron (Fe), % 0
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0
0.3 to 0.8
Nickel (Ni), % 0.8 to 1.8
0
Phosphorus (P), % 0.010 to 0.050
0
Silicon (Si), % 0.15 to 0.35
0.5 to 1.2
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0 to 0.5
0 to 0.15