MakeItFrom.com
Menu (ESC)

C19010 Copper vs. 7049A Aluminum

C19010 copper belongs to the copper alloys classification, while 7049A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19010 copper and the bottom bar is 7049A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
71
Elongation at Break, % 2.4 to 22
5.0 to 5.7
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
27
Shear Strength, MPa 210 to 360
340 to 350
Tensile Strength: Ultimate (UTS), MPa 330 to 640
580 to 590
Tensile Strength: Yield (Proof), MPa 260 to 620
500 to 530

Thermal Properties

Latent Heat of Fusion, J/g 210
370
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1060
640
Melting Onset (Solidus), °C 1010
430
Specific Heat Capacity, J/kg-K 390
850
Thermal Conductivity, W/m-K 260
130
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 63
40
Electrical Conductivity: Equal Weight (Specific), % IACS 48 to 63
120

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 8.9
3.1
Embodied Carbon, kg CO2/kg material 2.7
8.2
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 310
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3 to 140
28 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 1680
1800 to 1990
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
44
Strength to Weight: Axial, points 10 to 20
52 to 53
Strength to Weight: Bending, points 12 to 18
50 to 51
Thermal Diffusivity, mm2/s 75
50
Thermal Shock Resistance, points 12 to 23
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
84.6 to 89.5
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 97.3 to 99.04
1.2 to 1.9
Iron (Fe), % 0
0 to 0.5
Magnesium (Mg), % 0
2.1 to 3.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0.8 to 1.8
0
Phosphorus (P), % 0.010 to 0.050
0
Silicon (Si), % 0.15 to 0.35
0 to 0.4
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
7.2 to 8.4
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0 to 0.5
0 to 0.15