MakeItFrom.com
Menu (ESC)

C19010 Copper vs. ASTM A387 Grade 91 Class 2

C19010 copper belongs to the copper alloys classification, while ASTM A387 grade 91 class 2 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19010 copper and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.4 to 22
20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Shear Strength, MPa 210 to 360
420
Tensile Strength: Ultimate (UTS), MPa 330 to 640
670
Tensile Strength: Yield (Proof), MPa 260 to 620
470

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
600
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1010
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 63
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 48 to 63
10

Otherwise Unclassified Properties

Base Metal Price, % relative 31
7.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 42
37
Embodied Water, L/kg 310
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3 to 140
120
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 1680
580
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 20
24
Strength to Weight: Bending, points 12 to 18
22
Thermal Diffusivity, mm2/s 75
6.9
Thermal Shock Resistance, points 12 to 23
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 97.3 to 99.04
0
Iron (Fe), % 0
87.3 to 90.3
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0.8 to 1.8
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0.010 to 0.050
0 to 0.020
Silicon (Si), % 0.15 to 0.35
0.2 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0