MakeItFrom.com
Menu (ESC)

C19010 Copper vs. EN AC-43200 Aluminum

C19010 copper belongs to the copper alloys classification, while EN AC-43200 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19010 copper and the bottom bar is EN AC-43200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
72
Elongation at Break, % 2.4 to 22
1.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Tensile Strength: Ultimate (UTS), MPa 330 to 640
190 to 260
Tensile Strength: Yield (Proof), MPa 260 to 620
97 to 220

Thermal Properties

Latent Heat of Fusion, J/g 210
540
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1060
600
Melting Onset (Solidus), °C 1010
590
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 260
140
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 63
34
Electrical Conductivity: Equal Weight (Specific), % IACS 48 to 63
120

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.9
2.6
Embodied Carbon, kg CO2/kg material 2.7
7.8
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 310
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3 to 140
1.8 to 2.7
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 1680
66 to 330
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 18
54
Strength to Weight: Axial, points 10 to 20
20 to 28
Strength to Weight: Bending, points 12 to 18
28 to 35
Thermal Diffusivity, mm2/s 75
59
Thermal Shock Resistance, points 12 to 23
8.8 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
86.1 to 90.8
Copper (Cu), % 97.3 to 99.04
0 to 0.35
Iron (Fe), % 0
0 to 0.65
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0
0 to 0.55
Nickel (Ni), % 0.8 to 1.8
0 to 0.15
Phosphorus (P), % 0.010 to 0.050
0
Silicon (Si), % 0.15 to 0.35
9.0 to 11
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0 to 0.5
0 to 0.15