MakeItFrom.com
Menu (ESC)

C19010 Copper vs. G-CoCr28 Cobalt

C19010 copper belongs to the copper alloys classification, while G-CoCr28 cobalt belongs to the cobalt alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19010 copper and the bottom bar is G-CoCr28 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.4 to 22
6.7
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
83
Tensile Strength: Ultimate (UTS), MPa 330 to 640
560
Tensile Strength: Yield (Proof), MPa 260 to 620
260

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1200
Melting Completion (Liquidus), °C 1060
1330
Melting Onset (Solidus), °C 1010
1270
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
8.5
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
100
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.2
Embodied Energy, MJ/kg 42
84
Embodied Water, L/kg 310
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3 to 140
31
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 1680
160
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10 to 20
19
Strength to Weight: Bending, points 12 to 18
19
Thermal Diffusivity, mm2/s 75
2.2
Thermal Shock Resistance, points 12 to 23
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.050 to 0.25
Chromium (Cr), % 0
27 to 30
Cobalt (Co), % 0
48 to 52
Copper (Cu), % 97.3 to 99.04
0
Iron (Fe), % 0
9.7 to 24.5
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0.8 to 1.8
0 to 4.0
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0.010 to 0.050
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0