MakeItFrom.com
Menu (ESC)

C19010 Copper vs. SAE-AISI 1080 Steel

C19010 copper belongs to the copper alloys classification, while SAE-AISI 1080 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19010 copper and the bottom bar is SAE-AISI 1080 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.4 to 22
11
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
72
Shear Strength, MPa 210 to 360
460 to 520
Tensile Strength: Ultimate (UTS), MPa 330 to 640
770 to 870
Tensile Strength: Yield (Proof), MPa 260 to 620
480 to 590

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1060
1450
Melting Onset (Solidus), °C 1010
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 63
9.6
Electrical Conductivity: Equal Weight (Specific), % IACS 48 to 63
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 42
19
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3 to 140
80 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 1680
610 to 920
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10 to 20
27 to 31
Strength to Weight: Bending, points 12 to 18
24 to 26
Thermal Diffusivity, mm2/s 75
14
Thermal Shock Resistance, points 12 to 23
25 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.75 to 0.88
Copper (Cu), % 97.3 to 99.04
0
Iron (Fe), % 0
98.1 to 98.7
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0.8 to 1.8
0
Phosphorus (P), % 0.010 to 0.050
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0
0 to 0.050
Residuals, % 0 to 0.5
0