MakeItFrom.com
Menu (ESC)

C19010 Copper vs. N06255 Nickel

C19010 copper belongs to the copper alloys classification, while N06255 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19010 copper and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.4 to 22
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
81
Shear Strength, MPa 210 to 360
460
Tensile Strength: Ultimate (UTS), MPa 330 to 640
660
Tensile Strength: Yield (Proof), MPa 260 to 620
250

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1060
1470
Melting Onset (Solidus), °C 1010
1420
Specific Heat Capacity, J/kg-K 390
450
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 31
55
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.7
9.4
Embodied Energy, MJ/kg 42
130
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3 to 140
230
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 1680
150
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 10 to 20
22
Strength to Weight: Bending, points 12 to 18
20
Thermal Shock Resistance, points 12 to 23
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 97.3 to 99.04
0 to 1.2
Iron (Fe), % 0
6.0 to 24
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 0.8 to 1.8
47 to 52
Phosphorus (P), % 0.010 to 0.050
0 to 0.030
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Residuals, % 0 to 0.5
0