MakeItFrom.com
Menu (ESC)

C19010 Copper vs. S20910 Stainless Steel

C19010 copper belongs to the copper alloys classification, while S20910 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C19010 copper and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.4 to 22
14 to 39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
79
Shear Strength, MPa 210 to 360
500 to 570
Tensile Strength: Ultimate (UTS), MPa 330 to 640
780 to 940
Tensile Strength: Yield (Proof), MPa 260 to 620
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1080
Melting Completion (Liquidus), °C 1060
1420
Melting Onset (Solidus), °C 1010
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
13
Thermal Expansion, µm/m-K 17
16

Otherwise Unclassified Properties

Base Metal Price, % relative 31
22
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.8
Embodied Energy, MJ/kg 42
68
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3 to 140
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 1680
460 to 1640
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 20
28 to 33
Strength to Weight: Bending, points 12 to 18
24 to 27
Thermal Diffusivity, mm2/s 75
3.6
Thermal Shock Resistance, points 12 to 23
17 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 97.3 to 99.04
0
Iron (Fe), % 0
52.1 to 62.1
Manganese (Mn), % 0
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0.8 to 1.8
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0.010 to 0.050
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0.1 to 0.3
Residuals, % 0 to 0.5
0