MakeItFrom.com
Menu (ESC)

C19020 Copper vs. S41425 Stainless Steel

C19020 copper belongs to the copper alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C19020 copper and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.3 to 5.7
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 260 to 340
570
Tensile Strength: Ultimate (UTS), MPa 440 to 590
920

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
810
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 190
16
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 50
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 44
40
Embodied Water, L/kg 310
120

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 14 to 18
33
Strength to Weight: Bending, points 14 to 18
27
Thermal Diffusivity, mm2/s 55
4.4
Thermal Shock Resistance, points 16 to 21
33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 15
Copper (Cu), % 95.7 to 99.19
0 to 0.3
Iron (Fe), % 0
74 to 81.9
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0.5 to 3.0
4.0 to 7.0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0.010 to 0.2
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0.3 to 0.9
0
Residuals, % 0 to 0.2
0