MakeItFrom.com
Menu (ESC)

C19025 Copper vs. 4145 Aluminum

C19025 copper belongs to the copper alloys classification, while 4145 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19025 copper and the bottom bar is 4145 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
73
Elongation at Break, % 8.0 to 17
2.2
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
28
Shear Strength, MPa 300 to 360
69
Tensile Strength: Ultimate (UTS), MPa 480 to 620
120

Thermal Properties

Latent Heat of Fusion, J/g 210
540
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1080
590
Melting Onset (Solidus), °C 1020
520
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 160
100
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
26
Electrical Conductivity: Equal Weight (Specific), % IACS 40
84

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 8.9
2.8
Embodied Carbon, kg CO2/kg material 2.8
7.6
Embodied Energy, MJ/kg 44
140
Embodied Water, L/kg 320
1040

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 15 to 19
12
Strength to Weight: Bending, points 15 to 18
19
Thermal Diffusivity, mm2/s 47
42
Thermal Shock Resistance, points 17 to 22
5.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
83 to 87.4
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 97.1 to 98.5
3.3 to 4.7
Iron (Fe), % 0
0 to 0.8
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0.8 to 1.2
0
Phosphorus (P), % 0.030 to 0.070
0
Silicon (Si), % 0
9.3 to 10.7
Tin (Sn), % 0.7 to 1.1
0
Zinc (Zn), % 0 to 0.2
0 to 0.2
Residuals, % 0 to 0.3
0 to 0.15