MakeItFrom.com
Menu (ESC)

C19025 Copper vs. S36200 Stainless Steel

C19025 copper belongs to the copper alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C19025 copper and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 17
3.4 to 4.6
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 300 to 360
680 to 810
Tensile Strength: Ultimate (UTS), MPa 480 to 620
1180 to 1410

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
820
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 40
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 44
40
Embodied Water, L/kg 320
120

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 15 to 19
42 to 50
Strength to Weight: Bending, points 15 to 18
32 to 36
Thermal Diffusivity, mm2/s 47
4.3
Thermal Shock Resistance, points 17 to 22
40 to 48

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 14.5
Copper (Cu), % 97.1 to 98.5
0
Iron (Fe), % 0
75.4 to 79.5
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0.8 to 1.2
6.5 to 7.0
Phosphorus (P), % 0.030 to 0.070
0 to 0.030
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.7 to 1.1
0
Titanium (Ti), % 0
0.6 to 0.9
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.3
0