MakeItFrom.com
Menu (ESC)

C19100 Copper vs. EN 1.4837 Stainless Steel

C19100 copper belongs to the copper alloys classification, while EN 1.4837 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19100 copper and the bottom bar is EN 1.4837 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 17 to 37
6.8
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
78
Tensile Strength: Ultimate (UTS), MPa 250 to 630
500
Tensile Strength: Yield (Proof), MPa 75 to 550
250

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1050
Melting Completion (Liquidus), °C 1080
1390
Melting Onset (Solidus), °C 1040
1350
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 250
14
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 56
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 33
20
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 43
53
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60 to 99
29
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 1310
160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.7 to 20
18
Strength to Weight: Bending, points 9.9 to 18
18
Thermal Diffusivity, mm2/s 73
3.7
Thermal Shock Resistance, points 8.9 to 22
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 96.5 to 98.6
0
Iron (Fe), % 0 to 0.2
53.4 to 63.7
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0.9 to 1.3
11 to 14
Phosphorus (P), % 0.15 to 0.35
0 to 0.040
Silicon (Si), % 0
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0.35 to 0.6
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0