MakeItFrom.com
Menu (ESC)

C19100 Copper vs. EN 1.7376 Steel

C19100 copper belongs to the copper alloys classification, while EN 1.7376 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19100 copper and the bottom bar is EN 1.7376 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 17 to 37
20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Tensile Strength: Ultimate (UTS), MPa 250 to 630
710
Tensile Strength: Yield (Proof), MPa 75 to 550
460

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
600
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 250
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 56
11

Otherwise Unclassified Properties

Base Metal Price, % relative 33
6.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.1
Embodied Energy, MJ/kg 43
29
Embodied Water, L/kg 310
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60 to 99
130
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 1310
560
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.7 to 20
25
Strength to Weight: Bending, points 9.9 to 18
23
Thermal Diffusivity, mm2/s 73
6.9
Thermal Shock Resistance, points 8.9 to 22
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.12 to 0.19
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 96.5 to 98.6
0 to 0.3
Iron (Fe), % 0 to 0.2
86.2 to 90.6
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.35 to 0.65
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0.9 to 1.3
0 to 0.4
Phosphorus (P), % 0.15 to 0.35
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0.35 to 0.6
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0