MakeItFrom.com
Menu (ESC)

C19400 Copper vs. ASTM A387 Grade 91 Class 2

C19400 copper belongs to the copper alloys classification, while ASTM A387 grade 91 class 2 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19400 copper and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.3 to 37
20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
75
Shear Strength, MPa 210 to 300
420
Tensile Strength: Ultimate (UTS), MPa 310 to 630
670
Tensile Strength: Yield (Proof), MPa 98 to 520
470

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
600
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
10

Otherwise Unclassified Properties

Base Metal Price, % relative 30
7.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 40
37
Embodied Water, L/kg 300
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
120
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
580
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 20
24
Strength to Weight: Bending, points 11 to 18
22
Thermal Diffusivity, mm2/s 75
6.9
Thermal Shock Resistance, points 11 to 22
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 96.8 to 97.8
0
Iron (Fe), % 2.1 to 2.6
87.3 to 90.3
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0.015 to 0.15
0 to 0.020
Silicon (Si), % 0
0.2 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0.050 to 0.2
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.2
0