MakeItFrom.com
Menu (ESC)

C19400 Copper vs. Nickel 625

C19400 copper belongs to the copper alloys classification, while nickel 625 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19400 copper and the bottom bar is nickel 625.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.3 to 37
33 to 34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
79
Shear Strength, MPa 210 to 300
530 to 600
Tensile Strength: Ultimate (UTS), MPa 310 to 630
790 to 910
Tensile Strength: Yield (Proof), MPa 98 to 520
320 to 450

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1090
1350
Melting Onset (Solidus), °C 1080
1290
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 260
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
80
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 2.6
14
Embodied Energy, MJ/kg 40
190
Embodied Water, L/kg 300
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
220 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
260 to 490
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 9.7 to 20
26 to 29
Strength to Weight: Bending, points 11 to 18
22 to 24
Thermal Diffusivity, mm2/s 75
2.9
Thermal Shock Resistance, points 11 to 22
22 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 96.8 to 97.8
0
Iron (Fe), % 2.1 to 2.6
0 to 5.0
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.9
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0.015 to 0.15
0 to 0.015
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 0.050 to 0.2
0
Residuals, % 0 to 0.2
0