MakeItFrom.com
Menu (ESC)

C19400 Copper vs. C82400 Copper

Both C19400 copper and C82400 copper are copper alloys. They have a very high 97% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19400 copper and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.3 to 37
1.0 to 20
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
45
Tensile Strength: Ultimate (UTS), MPa 310 to 630
500 to 1030
Tensile Strength: Yield (Proof), MPa 98 to 520
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 200
270
Melting Completion (Liquidus), °C 1090
1000
Melting Onset (Solidus), °C 1080
900
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 260
130
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
25
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
26

Otherwise Unclassified Properties

Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
8.9
Embodied Energy, MJ/kg 40
140
Embodied Water, L/kg 300
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
10 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
270 to 3870
Stiffness to Weight: Axial, points 7.3
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.7 to 20
16 to 33
Strength to Weight: Bending, points 11 to 18
16 to 26
Thermal Diffusivity, mm2/s 75
39
Thermal Shock Resistance, points 11 to 22
17 to 36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.2 to 0.65
Copper (Cu), % 96.8 to 97.8
96 to 98.2
Iron (Fe), % 2.1 to 2.6
0 to 0.2
Lead (Pb), % 0 to 0.030
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0.015 to 0.15
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0.050 to 0.2
0 to 0.1
Residuals, % 0 to 0.2
0 to 0.5