MakeItFrom.com
Menu (ESC)

C19400 Copper vs. N10276 Nickel

C19400 copper belongs to the copper alloys classification, while N10276 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C19400 copper and the bottom bar is N10276 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 2.3 to 37
47
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
84
Shear Strength, MPa 210 to 300
550
Tensile Strength: Ultimate (UTS), MPa 310 to 630
780
Tensile Strength: Yield (Proof), MPa 98 to 520
320

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 1090
1370
Melting Onset (Solidus), °C 1080
1320
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 260
9.1
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
70
Density, g/cm3 8.9
9.1
Embodied Carbon, kg CO2/kg material 2.6
13
Embodied Energy, MJ/kg 40
170
Embodied Water, L/kg 300
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
300
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
230
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
22
Strength to Weight: Axial, points 9.7 to 20
24
Strength to Weight: Bending, points 11 to 18
21
Thermal Diffusivity, mm2/s 75
2.4
Thermal Shock Resistance, points 11 to 22
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
14.5 to 16.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 96.8 to 97.8
0
Iron (Fe), % 2.1 to 2.6
4.0 to 7.0
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
51 to 63.5
Phosphorus (P), % 0.015 to 0.15
0 to 0.040
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
3.0 to 4.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0.050 to 0.2
0
Residuals, % 0 to 0.2
0